Application of Deep Learning to Construct Breast Cancer Diagnosis Model

Author:

Lin Rong-Ho,Kujabi Benjamin KofiORCID,Chuang Chun-Ling,Lin Ching-Shun,Chiu Chun-Jen

Abstract

(1) Background: According to Taiwan’s ministry of health statistics, the rate of breast cancer in women is increasing annually. Each year, more than 10,000 women suffer from breast cancer, and over 2000 die of the disease. The mortality rate is annually increasing, but if breast cancer tumors are detected earlier, and appropriate treatment is provided immediately, the survival rate of patients will increase enormously. (2) Methods: This research aimed to develop a stepwise breast cancer model architecture to improve diagnostic accuracy and reduce the misdiagnosis rate of breast cancer. In the first stage, a breast cancer risk factor dataset was utilized. After pre-processing, Artificial Neural Network (ANN) and the support vector machine (SVM) were applied to the dataset to classify breast cancer tumors and compare their performances. The ANN achieved 76.6% classification accuracy, and the SVM using radial functions achieved the best classification accuracy of 91.6%. Therefore, SVM was utilized in the determination of results concerning the relevant breast cancer risk factors. In the second stage, we trained AlexNet, ResNet101, and InceptionV3 networks using transfer learning. The networks were studied using Adaptive Moment Estimation (ADAM) and Stochastic Gradient Descent with Momentum (SGDM) based optimization algorithm to diagnose benign and malignant tumors, and the results were evaluated; (3) Results: According to the results, AlexNet obtained 81.16%, ResNet101 85.51%, and InceptionV3 achieved a remarkable accuracy of 91.3%. The results of the three models were utilized in establishing a voting combination, and the soft-voting method was applied to average the prediction result for which a test accuracy of 94.20% was obtained; (4) Conclusions: Despite the small number of images in this study, the accuracy is higher compared to other literature. The proposed method has demonstrated the need for an additional productive tool in clinical settings when radiologists are evaluating mammography images of patients.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Breast Cancerhttps://www.who.int/news-room/fact-sheets/detail/breast-cancer

2. Cancer Facts & Figures 2021|American Cancer Societyhttps://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html

3. Stage-specific predictive models for breast cancer survivability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3