Mixer U-Net: An Improved Automatic Road Extraction from UAV Imagery

Author:

Sultonov Furkat,Park Jun-Hyun,Yun SangseokORCID,Lim Dong-WooORCID,Kang Jae-MoORCID

Abstract

Automatic road extraction from unmanned aerial vehicle (UAV) imagery has been one of the major research topics in the area of remote sensing analysis due to its importance in a wide range of applications such as urban planning, road monitoring, intelligent transportation systems, and automatic road navigation. Thanks to the recent advances in Deep Learning (DL), the tedious manual segmentation of roads can be automated. However, the majority of these models are computationally heavy and, thus, are not suitable for UAV remote-sensing tasks with limited resources. To alleviate this bottleneck, we propose two lightweight models based on depthwise separable convolutions and ConvMixer inception block. Both models take the advantage of computational efficiency of depthwise separable convolutions and multi-scale processing of inception module and combine them in an encoder–decoder architecture of U-Net. Specifically, we substitute standard convolution layers used in U-Net for ConvMixer layers. Furthermore, in order to learn images on different scales, we apply ConvMixer layer into Inception module. Finally, we incorporate pathway networks along the skip connections to minimize the semantic gap between encoder and decoder. In order to validate the performance and effectiveness of the models, we adopt Massachusetts roads dataset. One incarnation of our models is able to beat the U-Net’s performance with 10× fewer parameters, and DeepLabV3’s performance with 12× fewer parameters in terms of mean intersection over union (mIoU) metric. For further validation, we have compared our models against four baselines in total and used additional metrics such as precision (P), recall (R), and F1 score.

Funder

Dongil Culture and Scholarship Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3