Anisotropic Effective Elastic Properties for Multi-Dimensional Fractured Models
-
Published:2022-02-11
Issue:4
Volume:12
Page:1873
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Jian Shikai,Fu Liyun,Cheng Yifan
Abstract
The size, distribution, and orientation of fractures are generally multiscale and multi-dimensional in nature, leading to complex anisotropic characteristics. Theoretical or semi-analytical methods to determine the effective elastic properties depend on several assumptions, including the absence of the stress interaction and idealized fractures. On the basis of finite-element models, we conduct numerical oscillatory relaxation tests for determining the effective elastic properties of fractured rocks. The numerical approach for calculating equivalent stiffness tensors in two-dimensions is compared to the theoretical models for different fracture densities. Due to fracture interactions at high fracture densities, the suggested model makes a physical prediction. The effective elastic properties obtained from the application to a real fractured model, established from an outcrop, obviously disperse at different frequencies, which can be used to investigate fracture interactions and dynamic stress disturbances. The algorithm is extended to three-dimensional cases and also validated by using conventional effective medium theories. It is found that the fracture density obviously impacts the effective anisotropy properties, and the proposed method gives a reasonable prediction for high-fracture density. This work is significant because it enables the calculation of effective elastic properties of multi-dimensional fractured models and the fracture interaction mechanism.
Funder
The Strategic Priority Research Program of the Chinese Academy of Sciences
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献