Best Frame Selection to Enhance Training Step Efficiency in Video-Based Human Action Recognition

Author:

Gharahbagh Abdorreza AlaviORCID,Hajihashemi VahidORCID,Ferreira Marta Campos,Machado José J. M.,Tavares João Manuel R. S.ORCID

Abstract

In recent years, with the growth of digital media and modern imaging equipment, the use of video processing algorithms and semantic film and image management has expanded. The usage of different video datasets in training artificial intelligence algorithms is also rapidly expanding in various fields. Due to the high volume of information in a video, its processing is still expensive for most hardware systems, mainly in terms of its required runtime and memory. Hence, the optimal selection of keyframes to minimize redundant information in video processing systems has become noteworthy in facilitating this problem. Eliminating some frames can simultaneously reduce the required computational load, hardware cost, memory and processing time of intelligent video-based systems. Based on the aforementioned reasons, this research proposes a method for selecting keyframes and adaptive cropping input video for human action recognition (HAR) systems. The proposed method combines edge detection, simple difference, adaptive thresholding and 1D and 2D average filter algorithms in a hierarchical method. Some HAR methods are trained with videos processed by the proposed method to assess its efficiency. The results demonstrate that the application of the proposed method increases the accuracy of the HAR system by up to 3% compared to random image selection and cropping methods. Additionally, for most cases, the proposed method reduces the training time of the used machine learning algorithm.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3