Design of a Polarization-Selective EM Transparent Mesh-Type E-Shaped Antenna for Shared-Aperture Radar Applications

Author:

Wang SungsikORCID,Kim Hyunsoo,Kim Hyun,Choo HosungORCID

Abstract

In this paper, we propose a polarization-selective electromagnetic (EM) transparent mesh-type E-shaped antenna unit-cell in a shared aperture. The proposed antenna unit-cell, which can be expanded to a larger array in a modular way, has one S-band antenna on the upper layer and nine X-band antennas on the lower layers. The simple E-shaped structure, which has a low profile with a good bandwidth, is used for the antenna elements. However, due to the limited aperture size of the stacked configuration, the lower-layer elements can be physically blocked by the upper-layer element. To reduce this blockage effect, the S-band element is rotated 90 degrees with respect to X-band elements so that the polarizations between the S- and X-band elements are perpendicular to each other. Moreover, to minimize performance degradation due to the blockage effect, a mesh structure is applied for S-band elements for EM transparent characteristics, thereby improving EM transparency from −30 dB to −1.5 dB. The extended via cavity wall is also employed outside the nine X-band elements to minimize the mutual coupling and to reduce antenna size. To confirm the effectiveness of the proposed design, the proposed antenna unit-cell is fabricated, and the radiation characteristics are measured, in a full anechoic chamber. The average bore-sight gains in the S- and X-band are 5 dBi and 4.5 dBi, respectively. The results confirm that the proposed design is suitable for shared-aperture radar applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3