A Novel OpenMVS-Based Texture Reconstruction Method Based on the Fully Automatic Plane Segmentation for 3D Mesh Models

Author:

Li ShenhongORCID,Xiao XiongwuORCID,Guo Bingxuan,Zhang LinORCID

Abstract

The Markov Random Field (MRF) energy function, constructed by existing OpenMVS-based 3D texture reconstruction algorithms, considers only the image label of the adjacent triangle face for the smoothness term and ignores the planar-structure information of the model. As a result, the generated texture charts results have too many fragments, leading to a serious local miscut and color discontinuity between texture charts. This paper fully utilizes the planar structure information of the mesh model and the visual information of the 3D triangle face on the image and proposes an improved, faster, and high-quality texture chart generation method based on the texture chart generation algorithm of the OpenMVS. This methodology of the proposed approach is as follows: (1) The visual quality on different visual images of each triangle face is scored using the visual information of the triangle face on each image in the mesh model. (2) A fully automatic Variational Shape Approximation (VSA) plane segmentation algorithm is used to segment the blocked 3D mesh models. The proposed fully automatic VSA-based plane segmentation algorithm is suitable for multi-threaded parallel processing, which solves the VSA framework needed to manually set the number of planes and the low computational efficiency in a large scene model. (3) The visual quality of the triangle face on different visual images is used as the data term, and the image label of adjective triangle and result of plane segmentation are utilized as the smoothness term to construct the MRF energy function. (4) An image label is assigned to each triangle by the minimizing energy function. A texture chart is generated by clustering the topologically-adjacent triangle faces with the same image label, and the jagged boundaries of the texture chart are smoothed. Three sets of data of different types were used for quantitative and qualitative evaluation. Compared with the original OpenMVS texture chart generation method, the experiments show that the proposed approach significantly reduces the number of texture charts, significantly improves miscuts and color differences between texture charts, and highly boosts the efficiency of VSA plane segmentation algorithm and OpenMVS texture reconstruction.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference59 articles.

1. A dense matching algorithm of multi-view image based on the integrated multiple matching primitives;Jing-Xue;Acta Geod. Cartogr. Sin.,2013

2. Semantic segmentation of 3D textured meshes for urban scene analysis

3. Use of SfM-MVS approach to nadir and oblique images generated throught aerial cameras to build 2.5D map and 3D models in urban areas

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3