Semantic Segmentation of Sentinel-2 Imagery for Mapping Irrigation Center Pivots

Author:

Graf LukasORCID,Bach Heike,Tiede DirkORCID

Abstract

Estimating the number and size of irrigation center pivot systems (CPS) from remotely sensed data, using artificial intelligence (AI), is a potential information source for assessing agricultural water use. In this study, we identified two technical challenges in the neural-network-based classification: Firstly, an effective reduction of the feature space of the remote sensing data to shorten training times and increase classification accuracy is required. Secondly, the geographical transferability of the AI algorithms is a pressing issue if AI is to replace human mapping efforts one day. Therefore, we trained the semantic image segmentation algorithm U-NET on four spectral channels (U-NET SPECS) and the first three principal components (U-NET principal component analysis (PCA)) of ESA/Copernicus Sentinel-2 images on a study area in Texas, USA, and assessed the geographic transferability of the trained models to two other sites: the Duero basin, in Spain, and South Africa. U-NET SPECS outperformed U-NET PCA at all three study areas, with the highest f1-score at Texas (0.87, U-NET PCA: 0.83), and a value of 0.68 (U-NET PCA: 0.43) in South Africa. At the Duero, both models showed poor classification accuracy (f1-score U-NET PCA: 0.08; U-NET SPECS: 0.16) and segmentation quality, which was particularly evident in the incomplete representation of the center pivot geometries. In South Africa and at the Duero site, a high rate of false positive and false negative was observed, which made the model less useful, especially at the Duero test site. Thus, geographical invariance is not an inherent model property and seems to be mainly driven by the complexity of land-use pattern. We do not consider PCA a suited spectral dimensionality reduction measure in this. However, shorter training times and a more stable training process indicate promising prospects for reducing computational burdens. We therefore conclude that effective dimensionality reduction and geographic transferability are important prospects for further research towards the operational usage of deep learning algorithms, not only regarding the mapping of CPS.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3