Novel Techniques for Void Filling in Glacier Elevation Change Data Sets

Author:

Seehaus ThorstenORCID,Morgenshtern VeniaminORCID,Hübner Fabian,Bänsch Eberhard,Braun MatthiasORCID

Abstract

The increasing availability of digital elevation models (DEMs) facilitates the monitoring of glacier mass balances on local and regional scales. Geodetic glacier mass balances are obtained by differentiating DEMs. However, these computations are usually affected by voids in the derived elevation change data sets. Different approaches, using spatial statistics or interpolation techniques, were developed to account for these voids in glacier mass balance estimations. In this study, we apply novel void filling techniques, which are typically used for the reconstruction and retouche of images and photos, for the first time on elevation change maps. We selected 6210 km2 of glacier area in southeast Alaska, USA, covered by two void-free DEMs as the study site to test different inpainting methods. Different artificially voided setups were generated using manually defined voids and a correlation mask based on stereoscopic processing of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) acquisition. Three “novel” (Telea, Navier–Stokes and shearlet) as well as three “classical” (bilinear interpolation, local and global hypsometric methods) void filling approaches for glacier elevation data sets were implemented and evaluated. The hypsometric approaches showed, in general, the worst performance, leading to high average and local offsets. Telea and Navier–Stokes void filling showed an overall stable and reasonable quality. The best results are obtained for shearlet and bilinear void filling, if certain criteria are met. Considering also computational costs and feasibility, we recommend using the bilinear void filling method in glacier volume change analyses. Moreover, we propose and validate a formula to estimate the uncertainties caused by void filling in glacier volume change computations. The formula is transferable to other study sites, where no ground truth data on the void areas exist, and leads to higher accuracy of the error estimates on void-filled areas. In the spirit of reproducible research, we publish a software repository with the implementation of the novel void filling algorithms and the code reproducing the statistical analysis of the data, along with the data sets themselves.

Funder

Friedrich-Alexander University Emerging Fields Initiative

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3