Mapping Spatiotemporal Changes in Vegetation Growth Peak and the Response to Climate and Spring Phenology over Northeast China

Author:

Wang Xiaoying,Zhou YukeORCID,Wen Rihong,Zhou Chenghu,Xu LiliORCID,Xi Xi

Abstract

Global climate change has led to significant changes in seasonal rhythm events of vegetation growth, such as spring onset and autumn senescence. Spatiotemporal shifts in these vegetation phenological metrics have been widely reported over the globe. Vegetation growth peak represents plant photosynthesis capacity and responds to climate change. At present, spatiotemporal changes in vegetation growth peak characteristics (timing and maximum growth magnitude) and their underlying governing mechanisms remain unclear at regional scales. In this study, the spatiotemporal dynamics of vegetation growth peak in northeast China (NEC) was investigated using long-term NDVI time series. Then, the effects of climatic factors and spring phenology on vegetation growth peak were examined. Finally, the contribution of growth peak to vegetation production variability was estimated. The results of the phenological analysis indicate that the date of vegetation green up in spring and growth peak in summer generally present a delayed trend, while the amplitude of growth peak shows an increasing trend. There is an underlying cycle of 11 years in the vegetation growth peak of the entire study area. Air temperature and precipitation before the growing season have a small impact on vegetation growth peak amplitude both in its spatial extent and magnitude (mainly over grasslands) but have a significant influence on the date of the growth peak in the forests of the northern area. Spring green-up onset has a more significant impact on growth peak than air temperature and precipitation. Although green-up date plays a more pronounced role in controlling the amplitude of the growth peak in forests and grasslands, it also affects the date of growth peak in croplands. The amplitude of the growth peak has a significant effect on the inter-annual variability of vegetation production. The discrepant patterns of growth peak response to climate and phenology reflect the distinct adaptability of the vegetation growth peak to climate change, and result in different carbon sink patterns over the study area. The study of growth peak could improve our understanding of vegetation photosynthesis activity over various land covers and its contribution to carbon uptake.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3