Dynamic Crop Models and Remote Sensing Irrigation Decision Support Systems: A Review of Water Stress Concepts for Improved Estimation of Water Requirements

Author:

Tolomio MassimoORCID,Casa RaffaeleORCID

Abstract

Novel technologies for estimating crop water needs include mainly remote sensing evapotranspiration estimates and decision support systems (DSS) for irrigation scheduling. This work provides several examples of these approaches, that have been adjusted and modified over the years to provide a better representation of the soil–plant–atmosphere continuum and overcome their limitations. Dynamic crop simulation models synthetize in a formal way the relevant knowledge on the causal relationships between agroecosystem components. Among these, plant–water–soil relationships, water stress and its effects on crop growth and development. Crop models can be categorized into (i) water-driven and (ii) radiation-driven, depending on the main variable governing crop growth. Water stress is calculated starting from (i) soil water content or (ii) transpiration deficit. The stress affects relevant features of plant growth and development in a similar way in most models: leaf expansion is the most sensitive process and is usually not considered when planning irrigation, even though prolonged water stress during canopy development can consistently reduce light interception by leaves; stomatal closure reduces transpiration, directly affecting dry matter accumulation and therefore being of paramount importance for irrigation scheduling; senescence rate can also be increased by severe water stress. The mechanistic concepts of crop models can be used to improve existing simpler methods currently integrated in irrigation management DSS, provide continuous simulations of crop and water dynamics over time and set predictions of future plant–water interactions. Crop models can also be used as a platform for integrating information from various sources (e.g., with data assimilation) into process-based simulations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference144 articles.

1. Global agricultural green and blue water consumption under future climate and land use changes

2. Sustainability of the blue water footprint of crops

3. United Nations World Water Development Report 2020: Water and Climate Change,2020

4. More Crop Per Drop - Revisiting a research paradigm: results and synthesis of IWMI's research 1996-2005

5. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements;Allen,1998

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3