Abstract
This study presents a new retrieval approach for obtaining wind speeds from CyGNSS level-1 observables. Unlike other existing approaches, (1) this one is a variational technique that is based on a physical forward model, (2) it uses uncalibrated bin raw counts observables, (3) the geophysical information content comes from only one pixel of the broader delay-Doppler map, finest achievable resolution in level-1 products over the sea, and (4) calibrates them against track-wise polynomial adjustments to a background numerical weather prediction model. Through comparisons with the background model, other spaceborne sensors (SMAP, SMOS, ASCAT-A/B), and CyGNSS wind retrievals by other organizations, the study shows that this approach has skills to infer wind speeds, including hurricane force winds. For example, the Pearson’s correlation coefficient between these CyGNSS retrievals and ERA5 is 0.884, 0.832 with NOAA CyGNSS results, and 0.831 with respect to SMAP co-located measurements. Furthermore, the variational retrieval algorithm is a simplified version of the more general equations that are used in data assimilation, and the calibration scheme could also be integrated in the assimilation process. Therefore, this approach is also a good tool for analyzing the potential performance of ingesting uncalibrated level-1 single-pixel observables into NWP.
Subject
General Earth and Planetary Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献