Research on Vibration Amplitude of Ultra-Precision Aerostatic Motorized Spindle under the Combined Action of Rotor Unbalance and Hydrodynamic Effect

Author:

Wang WenboORCID,Song Pengyun,Yu Hechun,Zhang GuoqingORCID

Abstract

In the working process of the gas bearings, the unbalanced force of the rotor will increase nonlinearly with the increase in the rotating speed, resulting in an increase in the rotor’s vibration amplitude. On the other hand, with the increase in the rotating speed, the hydrodynamic effect will increase, and the nonlinear increase in the gas film force and stiffness will inhibit the increase in the vibration amplitude. In order to deeply study the influence of the unbalanced force and nonlinear gas film force on the vibration amplitude of the ultra-precision aerostatic motorized spindle, taking the double slit throttling gas bearing as an example, according to the equilibrium equation of the rotor under the combined action of gravity, the gas film force, and the unbalanced force, a calculation program based on the finite difference method for solving the rotor’s equilibrium position is completed. The calculation results show that: the hydrodynamic effect can significantly increase the bearing capacity and cause the change of the static equilibrium position of the rotor, but the offset amplitude of the static equilibrium position of the rotor gradually slows down with the increase in the rotating speed. The hydrodynamic effect improves the stiffness near the static equilibrium position of the rotor, making the rotor vibration track tend to be more “round”. Although the unbalanced force of the rotor increases nonlinearly as the rotating speed increases, the maximum offset between the dynamic equilibrium position and the static equilibrium position of the rotor under the action of the rotating unbalanced force is approximately linear with the rotating speed. Compared with the air supply pressure, the rotor unbalance and rotating speed are the main factors affecting the rotor dynamic equilibrium position offset. This study has a reference role in the in-depth study of the influence of rotating speed and rotor unbalance on the rotor static equilibrium position and dynamic equilibrium position offset, as well as in the design of gas bearings and the prediction of rotor vibration amplitude.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3