Applying Machine Strength Grading System to Round Timber Used in Hydraulic Engineering Works

Author:

Nocetti Michela,Aminti Giovanni,Wessels C. Brand,Brunetti Michele

Abstract

Round timber is often used for hydraulic engineering works, but the strength grading of round logs is not as well developed as that of sawn timber. The advantages of using defined strength classes, as well as the proper selection of the raw material, could be applicable to hydraulic works as well. In this study, the methods and rules developed for sawn timber were applied to the mechanical selection of oak round logs, paying particular attention to the issue of the simplicity of grading operations and the moisture content of the timber. Both the acoustic velocity and dynamic modulus of elasticity of oak logs were measured with different instruments before performing destructive bending tests; machine settings were derived for both properties and dry and wet grading operations were simulated to compare efficiency. The use of the dynamic modulus of elasticity makes machine grading more efficient. On the other hand, the use of acoustic velocity alone is feasible and makes the procedure much faster, even if wet grading resulted in very conservative estimations. The yields obtained were similar for lower grades, but to achieve higher strength classes, the dynamic modulus was preferable. For very fast and less expensive measurements, velocity could be considered an appropriate method, as an improvement over the use of unselected material.

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Natural Tree Forks to Grid Shells: Towards a Self-forming Geometry;Lecture Notes on Data Engineering and Communications Technologies;2022-08-13

2. A Study On Algorithm-Generated Assembly Of Curved I And Y Shaped Branches For Temporary Shelters;Journal of the International Association for Shell and Spatial Structures;2022-06-01

3. Mixed Visual and Machine Grading to Select Eucalyptus grandis Poles into High-Strength Classes;Forests;2021-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3