Damage Detection in Glass/Epoxy Laminated Composite Plates Using Modal Curvature for Structural Health Monitoring Applications

Author:

Govindasamy Mahendran,Kamalakannan GopalakrishnanORCID,Kesavan Chandrasekaran,Meenashisundaram Ganesh KumarORCID

Abstract

This paper deals with detection of macro-level crack type damage in rectangular E-Glass fiber/Epoxy resin (LY556) laminated composite plates using modal analysis. Composite plate-like structures are widely found in aerospace and automotive structural applications which are susceptible to damages. The formation of cracks in a structure that undergoes vibration may lead to catastrophic events such as structural failure, thus detection of such occurrences is considered necessary. In this research, a novel technique called as node-releasing technique in Finite Element Analysis (FEA), which was not attempted by the earlier researchers, is used to model the perpendicular cracks (the type of damage mostly considered in all the pioneering research works) and also slant cracks (a new type of damage considered in the present work) of various depths and lengths for Unidirectional Laminate (UDL) ([0]S and [45]S) composite layered configurations using commercial FE code Ansys, thus simulating the actual damage scenario. Another novelty of the present work is that the crack is modeled with partial depth along the thickness of the plate, instead of the through the thickness crack which has been of major focus in the literature so far, in order to include the possibility of existence of the crack up to certain layers in the laminated composite structures. The experimental modal analysis is carried out to validate the numerical model. Using central difference approximation method, the modal curvature is determined from the displacement mode shapes which are obtained via finite element analysis. The damage indicators investigated in this paper are Normalized Curvature Damage Factor (NCDF) and modal strain energy-based methods such as Strain Energy Difference (SED) and Damage Index (DI). It is concluded that, all the three damage detection algorithms detect the transverse crack clearly. In addition, the damage indicator NCDF seems to be more effective than the other two, particularly when the detection is for damage inclined to the longitudinal axis of the plate. The proposed method will provide the base data for implementing online structural health monitoring of structures using technologies such as Machine Learning, Artificial Intelligence, etc.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3