Endochondral Ossification for Spinal Fusion: A Novel Perspective from Biological Mechanisms to Clinical Applications

Author:

Ge Rile1,Liu Chenjun2,Zhao Yuhong3,Wang Kaifeng2,Wang Xiluan3ORCID

Affiliation:

1. Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Rd, Beijing 100050, China

2. Department of Spinal Surgery, Peking University People’s Hospital, 11th Xizhimen South Ave., Beijing 100044, China

3. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China

Abstract

Degenerative scoliosis (DS), encompassing conditions like spondylolisthesis and spinal stenosis, is a common type of spinal deformity. Lumbar interbody fusion (LIF) stands as a conventional surgical intervention for this ailment, aiming at decompression, restoration of intervertebral height, and stabilization of motion segments. Despite its widespread use, the precise mechanism underlying spinal fusion remains elusive. In this review, our focus lies on endochondral ossification for spinal fusion, a process involving vertebral development and bone healing. Endochondral ossification is the key step for the successful vertebral fusion. Endochondral ossification can persist in hypoxic conditions and promote the parallel development of angiogenesis and osteogenesis, which corresponds to the fusion process of new bone formation in the hypoxic region between the vertebrae. The ideal material for interbody fusion cages should have the following characteristics: (1) Good biocompatibility; (2) Stable chemical properties; (3) Biomechanical properties similar to bone tissue; (4) Promotion of bone fusion; (5) Favorable for imaging observation; (6) Biodegradability. Utilizing cartilage-derived bone-like constructs holds promise in promoting bony fusion post-operation, thus warranting exploration in the context of spinal fusion procedures.

Funder

National Key R&D Program of China

Major Health Special Project of the Ministry of Finance of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3