Machine Learning Predictions and Identifying Key Predictors for Safer Intubation: A Study on Video Laryngoscopy Views

Author:

Kim Jong-Ho12ORCID,Han Sung-Woo2ORCID,Hwang Sung-Mi1ORCID,Lee Jae-Jun12,Kwon Young-Suk12ORCID

Affiliation:

1. Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea

2. Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea

Abstract

This study develops a predictive model for video laryngoscopic views using advanced machine learning techniques, aiming to enhance airway management’s efficiency and safety. A total of 212 participants were involved, with 169 in the training set and 43 in the test set. We assessed outcomes using the percentage of glottic opening (POGO) score and considered factors like the modified Mallampati classification, thyromental height and distance, sternomental distance, mouth opening distance, and neck circumference. A range of machine learning algorithms was employed for data analysis, including Random Forest, Light Gradient Boosting Machine, K-Nearest Neighbors, Support Vector Regression, Ridge Regression, and Lasso Regression. The models’ performance was evaluated on the test set, with Root Mean Squared Error values ranging from 20.4 to 21.9. SHapley Additive exPlanations value analysis revealed that age is a consistent and significant predictor of POGO score across all models, highlighting its critical role in the predictive accuracy of these techniques.

Funder

Ministry of Health and Welfare, Republic of Korea

Hallym University Research Fund

Publisher

MDPI AG

Reference42 articles.

1. Alvarado, A.C., and Panakos, P. (2020). Endotracheal tube intubation techniques. StatPearls, StatPearls Publishing.

2. Videolaryngoscopy versus direct laryngoscopy for tracheal intubation in children (excluding neonates);Abdelgadir;Cochrane Database Syst. Rev.,2017

3. Videolaryngoscopy versus direct laryngoscopy for adults undergoing tracheal intubation;Hansel;Cochrane Database Syst. Rev.,2022

4. Kim, J.G., Ahn, C., Kim, W., Lim, T.-H., Jang, B.-H., Cho, Y., Shin, H., Lee, H., Lee, J., and Choi, K.-S. (2023). Comparison of video laryngoscopy with direct laryngoscopy for intubation success in critically ill patients: A systematic review and Bayesian network meta-analysis. Front. Med., 10.

5. Comparison of video laryngoscopy versus direct laryngoscopy during urgent endotracheal intubation: A randomized controlled trial;Silverberg;Crit. Care Med.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3