Experimental Investigation of Productivity, Specific Energy Consumption, and Hole Quality in Single-Pulse, Percussion, and Trepanning Drilling of IN 718 Superalloy

Author:

Sarfraz ShoaibORCID,Shehab Essam,Salonitis KonstantinosORCID,Suder Wojciech

Abstract

Laser drilling is a high-speed process that is used to produce high aspect ratio holes of various sizes for critical applications, such as cooling holes in aero-engine and gas turbine components. Hole quality is always a major concern during the laser drilling process. Apart from hole quality, cost and productivity are also the key considerations for high-value manufacturing industries. Taking into account the significance of improving material removal quantity, energy efficiency, and product quality, this study is performed in the form of an experimental investigation and multi-objective optimisation for three different laser drilling processes (single-pulse, percussion, and trepanning). A Quasi-CW fibre laser was used to produce holes in a 1 mm thick IN 718 superalloy. The impacts of significant process parameters on the material removal rate (MRR), specific energy consumption (SEC), and hole taper have been discussed based on the results collected through an experimental matrix that was designed using the Taguchi method. The novelty of this work focuses on evaluating and comparing the performance of laser drilling methods in relation to MRR, SEC, and hole quality altogether. Comparative analysis revealed single-pulse drilling as the best option for MRR and SEC as the MRR value reduces with percussion and trepanning by 99.70% and 99.87% respectively; similarly, percussion resulted in 14.20% higher SEC value while trepanning yielded a six-folds increase in SEC as compared to single-pulse drilling. Trepanning, on the other hand, outperformed the rest of the drilling processes with 71.96% better hole quality. Moreover, optimum values of parameters simultaneously minimising SEC and hole taper and maximising MRR are determined using multi-objective optimisation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3