Research on Fluid Flow and Permeability in Low Porous Rock Sample Using Laboratory and Computational Techniques

Author:

Krakowska PaulinaORCID,Madejski PawełORCID

Abstract

The paper presents results of fluid flow simulation in tight rock being potentially gas-bearing formation. Core samples are under careful investigation because of the high cost of production from the well. Numerical simulations allow determining absolute permeability based on computed X-ray tomography images of the rock sample. Computational fluid dynamics (CFD) give the opportunity to use the partial slip Maxwell model for permeability calculations. A detailed 3D geometrical model of the pore space was the input data. These 3D models of the pore space were extracted from the rock sample using highly specialized software poROSE (poROus materials examination SoftwarE, AGH University of Science and Technology, Kraków, Poland), which is the product of close cooperation of petroleum science and industry. The changes in mass flow depended on the pressure difference, and the tangential momentum accommodation coefficient was delivered and used in further quantitative analysis. The results of fluid flow simulations were combined with laboratory measurement results using a gas permeameter. It appeared that for the established parameters and proper fluid flow model (partial slip model, Tangential Momentum Accommodation Coefficient (TMAC), volumetric flow rate values), the obtained absolute permeability was similar to the permeability from the core test analysis.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3