Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System Optimization Models

Author:

Cao Karl-KiênORCID,von Krbek Kai,Wetzel Manuel,Cebulla Felix,Schreck Sebastian

Abstract

Energy system optimization models used for capacity expansion and dispatch planning are established tools for decision-making support in both energy industry and energy politics. The ever-increasing complexity of the systems under consideration leads to an increase in mathematical problem size of the models. This implies limitations of today’s common solution approaches especially with regard to required computing times. To tackle this challenge many model-based speed-up approaches exist which, however, are typically only demonstrated on small generic test cases. In addition, in applied energy systems analysis the effects of such approaches are often not well understood. The novelty of this study is the systematic evaluation of several model reduction and heuristic decomposition techniques for a large applied energy system model using real data and particularly focusing on reachable speed-up. The applied model is typically used for examining German energy scenarios and allows expansion of storage and electricity transmission capacities. We find that initial computing times of more than two days can be reduced up to a factor of ten while having acceptable loss of accuracy. Moreover, we explain what we mean by “effectiveness of model reduction” which limits the possible speed-up with shared memory computers used in this study.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3