Comparison of Heat-Pipe Cooling System Design Processes in Railway Propulsion Inverter Considering Power Module Reliability

Author:

Lee June-Seok,Choi Ui-Min

Abstract

In this paper, the effect of the heat-pipe cooling system design processes on the reliability of the power module in a railway propulsion inverter was investigated. The existing design processes for the heat-pipe cooling system guarantee that the junction temperature of power devices does not exceed the maximum allowable junction temperature when the railway propulsion inverter operates under its mission profile; therefore, each step of the design process was reviewed to analyze the effect of the heat-pipe cooling system. Based on the processes, in the calculation for the required thermal resistance of the heat-pipe cooling system, two difference losses were considered with the thermal resistances of the insulated gate bipolar mode transistor (IGBT) module and the thermal grease at an interface between the baseplate of IGBT module and heat-pipe cooling system. The control scheme and mission profile of the train were taken into account to calculate the power losses. Then, the designed heat-pipe cooling systems were compared in terms of the size and weight. In addition, the junction temperatures and lifetimes of the power module with heat-pipe cooling systems designed by different power losses were estimated and compared. Finally, guidelines for a heat-pipe system cooling design are proposed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3