Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine

Author:

Aguilar JonathanORCID,Rubio-Clemente AinhoaORCID,Velasquez LauraORCID,Chica EdwinORCID

Abstract

Hydrokinetic turbines are devices that harness the power from moving water of rivers, canals, and artificial currents without the construction of a dam. The design optimization of the rotor is the most important stage to maximize the power production. The rotor is designed to convert the kinetic energy of the water current into mechanical rotation energy, which is subsequently converted into electrical energy by an electric generator. The rotor blades are critical components that have a large impact on the performance of the turbine. These elements are designed from traditional hydrodynamic profiles (hydrofoils), to directly interact with the water current. Operational effectiveness of the hydrokinetic turbines depends on their performance, which is measured by using the ratio between the lift coefficient (CL) and the drag coefficient (CD) of the selected hydrofoil. High lift forces at low flow rates are required in the design of the blades; therefore, the use of multi-element hydrofoils is commonly regarded as an adequate solution to achieve this goal. In this study, 2D CFD simulations and multi-objective optimization methodology based on surrogate modelling were conducted to design an appropriate multi-element hydrofoil to be used in a horizontal-axis hydrokinetic turbine. The Eppler 420 hydrofoil was utilized for the design of the multi-element hydrofoil composed of a main element and a flap. The multi-element design selected as the optimal one had a gap of 2.825% of the chord length (C1), an overlap of 8.52 %C1, a flap deflection angle (δ) of 19.765°, a flap chord length (C2) of 42.471 %C1, and an angle of attack (α) of –4°.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference64 articles.

1. Aircraft Aerodynamic Design: Geometry and Optimization;Sóbester,2014

2. Formula One Rear Wing Optimizationhttps://upcommons.upc.edu/handle/2099.1/12270

3. Multielement Airfoils for Wind Turbines;Ragheb,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3