Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia

Author:

Brahimi TayebORCID

Abstract

Predicting wind speed for wind energy conversion systems (WECS) is an essential monitor, control, plan, and dispatch generated power and meets customer needs. The Kingdom of Saudi Arabia recently set ambitious targets in its national transformation program and Vision 2030 to move away from oil dependence and redirect oil and gas exploration efforts to other higher-value uses, chiefly meeting 10% of its energy demand through renewable energy sources. In this paper, we propose the use of the artificial neural networks (ANNs) method as a means of predicting daily wind speed in a number of locations in the Kingdom of Saudi Arabia based on multiple local meteorological measurement data provided by K.A.CARE. The suggested model is a feed-forward neural network model with the administered learning technique using a back-propagation algorithm. Results indicate that the best structure is obtained with thirty neurons in the hidden layers matching a minimum root mean square error (RMSE) and the highest correlation coefficient (R). A comparison between predicted and actual data from meteorological stations showed good agreement. A comparison between five machine learning algorithms, namely ANN, support vector machines (SVM), random tree, random forest, and RepTree revealed that random tree has low correlation and relatively high root mean square error. The significance of the present study relies on its ability to predict wind speeds, a necessary prerequisite to executing sustainable integration of wind power into Saudi Arabia’s electrical grid, assisting operators in efficiently managing generated power, and helping achieve the energy efficiency and production targets of Vision 2030.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference67 articles.

1. REN21, Global Status Report, Renewables 2018, Renewable Energy Policiy Network for the 21st Centuryhttp://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf

2. GWEC, Global Wind Report 2017-files.gwec.net. (n.d.)http://files.gwec.net/files/GWR2017.pdf

3. GWEC, Global Wind Report 2018https://gwec.net/global-wind-report-2018/

4. Wind Energy in Europe: Scenarios for 2030;Tardieu,2017

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3