Selective Mineralization and Recovery of Au(III) from Multi-Ionic Aqueous Systems by Bacillus licheniformis FZUL-63

Author:

Cheng YangjianORCID,Ke Zhibin,Bian Xiaojing,Zhang Jianhua,Huang Zhen,Lv Yuancai,Liu Minghua

Abstract

The recovery of precious metals is a project with both economic and environmental significance. In this paper, how to use bacterial mineralization to selectively recover gold from multi-ionic aqueous systems is presented. The Bacillus licheniformis FZUL-63, isolated from a landscape lake in Fuzhou University, was shown to selectively mineralize and precipitate gold from coexisting ions in aqueous solution. The removal of Au(III) almost happened in the first hour. Scanning electron microscope with X-ray energy dispersive spectroscopy (SEM/EDS-mapping) results and fourier transform infrared spectroscopy (FTIR) data show that the amino, carboxyl, and phosphate groups on the surface of the bacteria are related to the adsorption of gold ions. X-ray photoelectron spectroscopy (XPS) results implied that Au(III) ions were reduced to those that were monovalent, and the Au(I) was then adsorbed on the bacterial surface at the beginning stage (in the first hour). X-ray diffraction (XRD) results showed that the gold biomineralization began about 10 h after the interaction between Au(III) ions and bacteria. Au(III) mineralization has rarely been influenced by other co-existing metal ions. Transmission electron microscope (TEM) analysis shows that the gold nanoparticles have a polyhedral structure with a particle size of ~20 nm. The Bacillus licheniformis FZUL-63 could selectively mineralize and recover 478 mg/g (dry biomass) gold from aqua regia-based metal wastewater through four cycles. This could be of great potential in practical applications.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3