Anomaly Detection Using a Sliding Window Technique and Data Imputation with Machine Learning for Hydrological Time Series

Author:

Kulanuwat Lattawit,Chantrapornchai Chantana,Maleewong Montri,Wongchaisuwat PapisORCID,Wimala Supaluk,Sarinnapakorn Kanoksri,Boonya-aroonnet Surajate

Abstract

Water level data obtained from telemetry stations typically contains large number of outliers. Anomaly detection and a data imputation are necessary steps in a data monitoring system. Anomaly data can be detected if its values lie outside of a normal pattern distribution. We developed a median-based statistical outlier detection approach using a sliding window technique. In order to fill anomalies, various interpolation techniques were considered. Our proposed framework exhibited promising results after evaluating with F1-score and root mean square error (RMSE) based on our artificially induced data points. The present system can also be easily applied to various patterns of hydrological time series with diverse choices of internal methods and fine-tuned parameters. Specifically, the Spline interpolation method yielded a superior performance on non-cyclical data while the long short-term memory (LSTM) outperformed other interpolation methods on a distinct tidal data pattern.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference40 articles.

1. Anomaly detection

2. Outlier Detection for Temporal Data: A Survey

3. Real-time anomaly detection for streaming analytics;Ahmad;arXiv,2016

4. Survey on Outlier Detection in Data Stream

5. A comparative study of local outlier factor algorithms for outliers detection in data streams;Mishra,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3