Realization of People Density and Smoke Flow in Buildings during Fire Accidents Using Raspberry and OpenCV

Author:

Birajdar Gajanand S.,Baz MohammedORCID,Singh RajeshORCID,Rashid MamoonORCID,Gehlot Anita,Akram Shaik VaseemORCID,Alshamrani Sultan S.ORCID,AlGhamdi Ahmed SaeedORCID

Abstract

Fire accidents in residential, commercial, and industrial environments are a major concern since they cause considerable infrastructure and human life damage. On other hand, the risk of fires is growing in conjunction with the growth of urban buildings. The existing techniques for detecting fire through smoke sensors are difficult in large regions. Furthermore, during fire accidents, the visibility of the evacuation path is occupied with smoke and, thus, causes challenges for people evacuating individuals from the building. To overcome this challenge, we have recommended a vision-based fire detection system. A vision-based fire detection system is implemented to identify fire events as well as to count the number people inside the building. In this study, deep neural network (DNN) models, i.e., MobileNet SSD and ResNet101, are embedded in the vision node along with the Kinect sensor in order to detect fire accidents and further count the number of people inside the building. A web application is developed and integrated with the vision node through a local server for visualizing the real-time events in the building related to the fire and people counting. Finally, a real-time experiment is performed to check the accuracy of the proposed system for smoke detection and people density.

Funder

Taif University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3