Effect of Planting Ground Treatments Using Artificial Rainfall Slope Simulating Degraded Forestland on Drought Stress Susceptibility of Pinus densiflora

Author:

Lee Kyeongcheol1ORCID,Song Yeonggeun2ORCID,Kim Minsu3ORCID,Choi Wooyoung2,Ju Hyoseong1,Koo Namin3

Affiliation:

1. Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea

2. Department of Foresty, Jeonbuk National University, Jeonju 54896, Republic of Korea

3. Division of Forest Ecology, National Institute of Forest Science, Seoul 55365, Republic of Korea

Abstract

Trees in degraded forest areas are generally exposed to water stress due to harsh environmental conditions, threatening their survival. This study simulated the environmental conditions of a degraded forest area by constructing an artificial rainfall slope and observing the physiological responses of Pinus densiflora to control, mulching, and waterbag treatments. P. densiflora exhibited distinct isohydric plant characteristics of reducing net photosynthetic rate and stomatal transpiration rate through regulating stomatal conductance in response to decreased soil moisture, particularly in the control and waterbag treatments. Additionally, the trees increased photochemical quenching, such as Y(NPQ), to dissipate excess energy as heat and minimize damage to the photosynthetic apparatus. However, these adaptive mechanisms have temporal limitations, necessitating appropriate measures. Under extreme drought stress (DS45), mulching treatment showed 4.5 times and 2.2 times higher in PIabs and SFIabs than in the control, and after the recovery period (R30), waterbag and mulching treatment showed similar levels, while PIabs and SFIabs in the control were only 45% and 75% of those in the mulching and waterbag treatments, respectively. Specifically, mulching extended the physiological mechanisms supporting survival by more than a week, making it the most effective method for enhancing the planting ground in degraded forest areas. Although the waterbag treatment was less effective than mulching treatment, it still significantly contributed to forming better growth conditions compared to the control. These findings highlight the potential for mulching and waterbag treatments to enhance forest restoration efforts, suggesting future research and application could lead to more resilient reforested areas capable of withstanding climate change-induced drought conditions.

Funder

National Institute of Forest Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3