Nanostructured Thermoelectric PbTe Thin Films with Ag Addition Deposited by Femtosecond Pulsed Laser Ablation

Author:

Bellucci Alessandro1ORCID,Orlando Stefano2,Medici Luca3,Lettino Antonio3,Mezzi Alessio4ORCID,Kaciulis Saulius4ORCID,Trucchi Daniele Maria1ORCID

Affiliation:

1. Istituto di Struttura della Materia (ISM)—Sez. Montelibretti, DiaTHEMA Laboratory, Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, 00015 Monterotondo, Italy

2. Istituto di Struttura della Materia (ISM)—Sez. Tito Scalo, FemtoLab, Consiglio Nazionale delle Ricerche, Zona Industriale, 85050 Tito, Italy

3. Istituto di Metodologie per l’Analisi Ambientale (IMAA), Consiglio Nazionale delle Ricerche, Zona Industriale, 85050 Tito, Italy

4. Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)—Sez. Montelibretti, Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, 00015 Monterotondo, Italy

Abstract

Pulsed laser deposition operated by an ultra-short laser beam was used to grow in a vacuum and at room temperature natively nanostructured thin films of lead telluride (PbTe) for thermoelectric applications. Different percentages of silver (Ag), from 0.5 to 20% of nominal concentration, were added to PbTe deposited on polished technical alumina substrates using a multi-target system. The surface morphology and chemical composition were analyzed by Scanning Electron Microscope and X-ray Photoelectron Spectroscopy, whereas the structural characteristics were investigated by X-ray Diffraction. Electrical resistivity as a function of the sample temperature was measured by the four-point probe method by highlighting a typical semiconducting behavior, apart from the sample with the maximum Ag concentration acting as a degenerate semiconductor, whereas the Seebeck coefficient measurements indicate n-type doping for all the samples. The power factor values (up to 14.9 µW cm−1 K−2 at 540 K for the nominal 10% Ag concentration sample) are competitive for low-power applications on flexible substrates, also presuming the achievement of a large reduction in the thermal conductivity thanks to the native nanostructuring.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3