Oxidation Kinetics of Neat Methyl Oleate and as a Blend with Solketal

Author:

Türck Julian1,Schmitt Fabian2,Anthofer Lukas2,Lichtinger Anne3,Türck Ralf24,Ruck Wolfgang1,Krahl Jürgen45

Affiliation:

1. School of Sustainability, Leuphana Universität Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany

2. Tecosol GmbH, Jahnstraße 2, 97199 Ochsenfurt, Germany

3. Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany

4. Fuels Joint Research Group, Masch 16, 38531 Röttgesbüttel, Germany

5. Innovation Campus Lemgo, OWL University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany

Abstract

The complexity of biodiesel aging has shown that the mechanism needs further research. The rate of aging product formation and associated interactions can help improve fuel quality. Since biodiesel is a multicomponent system and constant changes occur in the chemical environment, which interactions yield which products must be shown in more detail. Particularly under observation was the correlation between peroxides and epoxides. In addition, it is critical that the influence and interactions of new drop-in fuel candidates be investigated. In this work, the kinetics of the formation of aging products of methyl oleate (C18:1) are studied. The aim was to reduce the complexity in order to be able to make more precise and detailed statements about the mechanism. Ketones, acids, peroxide, and epoxide values were recorded. A distinction is made between pure methyl oleate and mixtures with 3 wt% isopropylidene glycerine (solketal). After solketal decomposed in the blends, the aging process showed changes. The influence of solketal resulted in a higher number of acids and epoxides over time. It implied that peroxides are not necessarily the precursor of epoxides. In summary, correlation and solketal’s influence showed that a sequence of aging products could be detected.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference47 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3