Optimization of the Thermal Environment of Large-Scale Open Space with Subzone-Based Temperature Setting Using BEM and CFD Coupling Simulation

Author:

Zhang Qihang1,Deng Qinli12ORCID,Shan Xiaofang12,Kang Xin12,Ren Zhigang12

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China

2. Hainan Institute of Wuhan University of Technology, No. 5 Chuangxin Road, Sanya 572024, China

Abstract

A cruise ship, which has large-scale open spaces, has an uneven cabin thermal environment in the cruise public space, leading to overcooling or poor cooling issues. Therefore, optimizing the thermal environment of public spaces during a cruise should be the priority. According to the space functions of the cruise ship, the large public space is divided into three subzones: the entertainment area (Subzone I), the round-table dining area (Subzone II), and the square-table dining area (Subzone III). To create a uniform, stable, and comfortable thermal environment, this study proposes a subzone-based temperature setting approach to independently adjust the thermal environment of each subzone. Coupling simulation of building energy modeling (BEM) and computational fluid dynamics (CFD) was adopted in this study to determine proper temperature setpoints of the subzones under different occupancy rates. The results indicate that, compared with a single-temperature setpoint for the entire public space, the subzone-based temperature setpoints could achieve a uniform thermal environment. The average temperature difference among the three subzones was 0.68 °C. Moreover, the airflow between two adjacent subzones considerably affected the BEM results of energy consumption of the air-conditioning system.

Funder

Sanya Science and Education Innovation Park of Wuhan University of Technology

Hainan Province Science and Technology Special Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3