Experimental Research on Integrated Disassembly Equipment of Super Large Offshore Oilfield Facilities

Author:

Li Changjiang1,Xiao Wensheng1,Cui Junguo1ORCID,Li Quan1,Fan Lianghuan1,Tan Liping1ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Based on the key module-lifting arm system, based on the principle of similarity and the hydrodynamic experimental method of a multi-dimension vibration test platform, an experimental platform for dismantling equipment is designed and built. Subsequently, the motion control model of the six-degrees-of-freedom platform is established. The three-ring control model of a servo electric cylinder is established, and the active heave compensation control of a servo electric cylinder is realized by combining position control theory. Based on the co-simulation of ADAMS and Simulink, the co-simulation system of the integrated dismantling equipment experimental platform is designed and built, and the simulation system is tested and verified. Finally, simulation and experimental verification are carried out based on the experimental platform and co-simulation system. The results show that the heave compensation rate reaches 58.3% in third-class sea conditions, 61.2% in fourth-class sea conditions, and 62.4% in fifth-class sea conditions. The integrated dismantling scheme of super large offshore oilfield facilities is feasible but, in order to ensure the safety and reliability of the operation, a heave compensation system needs to be added. The error between the simulation results and the experimental results is about 15%. Based on the analysis of external interference factors in the experiment, the error results are within a reasonable range, which proves that the experimental platform, the co-simulation system of the experimental platform, and the heave compensation strategy are accurate and effective. This study, for the first time in China, provides an effective experimental platform and co-simulation platform for the design and optimization of the integrated dismantling equipment of super large offshore oilfield facilities and lays a good research foundation for the construction and engineering demonstration of subsequent equipment.

Funder

Ministry of Industry and Information Technology of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3