Affiliation:
1. Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
Abstract
Ammonia has been intensively studied as a clean, sustainable fuel source and an efficient energy storage medium due to its effectiveness as a hydrogen carrier molecule. However, the currently used Haber–Bosch process requires a large fossil fuel input, high temperatures and pressures, as well as a significant capital investment. These constraints prevent decentralized and small-scale ammonia production at the level of small farms and local communities. Non-thermal plasma (NTP) can promote ammonia synthesis in operating conditions in which, in a conventional process, a catalyst is generally not active. In this study, the production of NTP-assisted catalytic ammonia at milder temperatures and ambient pressure was investigated. Four different structured catalysts were prepared and tested using an experimental plant based on a dielectric barrier discharge (DBD) reactor. The effect of the gas hourly space velocity (GHSV) was investigated, as well as the effect of the N2/H2 ratio on catalyst performance. The results evidenced that the best catalytic activity (about 4 mmol h−1 of produced NH3) was obtained using the 10Ni/zeolite 13X sample with the lowest energy consumption, thus highlighting the feasibility of this innovative technology in this field.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献