Prediction Error-Based Power Forecasting of Wind Energy System Using Hybrid WT–ROPSO–NARMAX Model

Author:

Shah Aamer A.1,Aftab Almani A.2,Han Xueshan2,Baloch Mazhar Hussain3ORCID,Honnurvali Mohamed Shaik3,Chauhdary Sohaib Tahir4

Affiliation:

1. School of Electrical and Control Engineering, Xuzhou University of Technology, Xuzhou 221018, China

2. Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jingshi Road 17923, Jinan 250061, China

3. College of Engineering, A’ Sharqiyah University, Ibra 400, Oman

4. College of Engineering, Dhofar University, Salalah 211, Oman

Abstract

The volatility and intermittency of wind energy result in highly unpredictable wind power output, which poses challenges to the stability of the intact power system when integrating large-scale wind power. The accuracy of wind power prediction is critical for maximizing the utilization of wind energy, improving the quality of power supply, and maintaining the stable operation of the power grid. To address this challenge, this paper proposes a novel hybrid forecasting model, referred to as Hybrid WT–PSO–NARMAX, which combines wavelet transform, randomness operator-based particle swarm optimization (ROPSO), and non-linear autoregressive moving average with external inputs (NARMAX). The model is specifically designed for power generation forecasting in wind energy systems, and it incorporates the interactions between the wind system’s supervisory control and data acquisition’s (SCADA) actual power record and numerical weather prediction (NWP) meteorological data for one year. In the proposed model, wavelet transform is utilized to significantly improve the quality of the chaotic meteorological and SCADA data. The NARMAX techniques are used to map the non-linear relationship between the NWP meteorological variables and SCADA wind power. ROPSO is then employed to optimize the parameters of NARMAX to achieve higher forecasting accuracy. The performance of the proposed model is compared with other forecasting strategies, and it outperforms in terms of forecasting accuracy improvement. Additionally, the proposed Prediction Error-Based Power Forecasting (PEBF) approach is introduced, which retrains the model to update the results whenever the difference between forecasted and actual wind powers exceeds a certain limit. The efficiency of the developed scheme is evaluated through a real case study involving a 180 MW grid-connected wind energy system located in Shenyang, China. The proposed model’s forecasting accuracy is evaluated using various assessment metrics, including mean absolute error (MAE) and root mean square error (RMSE), with the average values of MAE and RMSE being 0.27% and 0.30%, respectively. The simulation and numerical results demonstrated that the proposed model accurately predicts wind output power.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3