Numerical Study on the Mechanism of Coal and Gas Outburst in the Coal Seam Thickening Area during Mining

Author:

Liu Zhengshuai12,Shu Longyong2,Huo Zhonggang2,Fan Yongpeng2

Affiliation:

1. Chinese Institute of Coal Science, Beijing 100013, China

2. China Coal Research Institute, Beijing 100013, China

Abstract

Most coal and gas outbursts occur in the coal thickness variation zone. However, it is difficult to illustrate the mechanism of outbursts in coal thickening areas by physical simulation experiments. In this study, a coupled multi-field model, established by considering the stress–strain field, gas transport field and damage field, was used to investigate the evolution of stress, gas pressure and plastic failure zones under different variation gradients and amplitudes of coal thickness. The simulation results show that the stress peak at the coal thickening transition zone caused by mining is higher than that at the constant thickness coal seam. The stress peak at the coal thickening transition zone decreases from 18.8 MPa to 16.9 MPa with the increase in the transition zone from 0 m to 10 m under the constant coal thickness variation from 3 m to 7 m; while it increases from 16.2 MPa to 19.3 MPa with the increase in the transition zone from 2 m to 10 m under the constant coal thickness variation gradient of 45°. Similarly, the plastic deformation volume of the coal seam between the driving face and the coal thickening interface increases with the increase in the coal thickness variation gradient and amplitude. In addition, the gas pressure in the fracture declines slower in the coal thickness variation zone affected by the higher coal thickness variation gradients or amplitudes. The mechanism for outbursts occurring in the increasing coal thickness area was further discussed, and combined with the simulation results for the energy principle of outbursts. Compared with the constant thickness coal seam, the elastic energy increases from 1.85 MJ to 1.94 MJ, and the free gas expansion energy increases from 24.19 MJ to 50.57 MJ when the coal thickness varies from 3 m to 13 m within a 10 m transition zone. The variation of coal thickness causes higher stress, higher gas pressure and low coal strength, which triggers outbursts more easily. The research could provide the theoretical support to prevent and control outbursts in coal seam thickening areas during mining.

Funder

Postdoctoral Research Foundation of China

National Natural Science Fund of China

Technology Innovation Fund of China Coal Research Institute

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3