Abstract
We present herein a unique concept of multifrequency induced-charge electroosmosis (MICEO) actuated directly on driving electrode arrays, for highly-efficient simultaneous transport and convective mixing of fluidic samples in microscale ducts. MICEO delicately combines transversal AC electroosmotic vortex flow, and axial traveling-wave electroosmotic pump motion under external dual-Fourier-mode AC electric fields. The synthetic flow field associated with MICEO is mathematically analyzed under thin layer limit, and the particle tracing experiment with a special powering technique validates the effectiveness of this physical phenomenon. Meanwhile, the simulation results with a full-scale 3D computation model demonstrate its robust dual-functionality in inducing fully-automated analyte transport and chaotic stirring in a straight fluidic channel embedding double-sided quarter-phase discrete electrode arrays. Our physical demonstration with multifrequency signal control on nonlinear electroosmosis provides invaluable references for innovative designs of multifunctional on-chip analytical platforms in modern microfluidic systems.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献