Lab-Based Evaluation of Device-Free Passive Localization Using Multipath Channel Information

Author:

Ninnemann JonasORCID,Schwarzbach PaulORCID,Jung AndreaORCID,Michler Oliver

Abstract

The interconnection of devices, driven by the Internet of Things (IoT), enables a broad variety of smart applications and location-based services. The latter is often realized via transponder based approaches, which actively determine device positions within Wireless Sensor Networks (WSN). In addition, interpreting wireless signal measurements also enables the utilization of radar-like passive localization of objects, further enhancing the capabilities of WSN ranging from environmental mapping to multipath detection. For these approaches, the target objects are not required to hold any device nor to actively participate in the localization process. Instead, the signal delays caused by reflections at objects within the propagation environment are used to localize the object. In this work, we used Ultra-Wide Band (UWB) sensors to measure Channel Impulse Responses (CIRs) within a WSN. Determining an object position based on the CIR can be achieved by formulating an elliptical model. Based on this relation, we propose a CIR environmental mapping (CIR-EM) method, which represents a heatmap generation of the propagation environment based on the CIRs taken from radio communication signals. Along with providing imaging capabilities, this method also allows a more robust localization when compared to state-of-the-art methods. This paper provides a proof-of-concept of passive localization solely based on evaluating radio communication signals by conducting measurement campaigns in an anechoic chamber as a best-case environment. Furthermore, shortcomings due to physical layer limitations when using non-dedicated hardware and signals are investigated. Overall, this work lays a foundation for related research and further evaluation in more application-oriented scenarios.

Funder

Technische Universität Dresden

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3