Extraction Optimization and Anti-Tumor Activity of Polysaccharides from Chlamydomonas reinhardtii

Author:

Liang Zhongwen1,Xiong Lan1,Zang Ying1,Tang Zhijuan1,Shang Zhenyu1,Zhang Jingyu1,Jia Zihan1,Huang Yanting1,Ye Xiaoyu1,Liu Hongquan1ORCID,Li Mei1

Affiliation:

1. Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China

Abstract

Chlamydomonas reinhardtii polysaccharides (CRPs) are bioactive compounds derived from C. reinhardtii, yet their potential in cancer therapy remains largely unexplored. This study optimized the ultrasound-assisted extraction conditions using response surface methodology and proceeded with the isolation and purification of these polysaccharides. The optimal extraction conditions were identified as a sodium hydroxide concentration of 1.5%, ultrasonic power of 200 W, a solid-to-liquid ratio of 1:25 g/mL, an ultrasonic treatment time of 10 min, and a water bath duration of 2.5 h, yielding an actual extraction rate of 5.71 ± 0.001%, which closely aligns with the predicted value of 5.639%. Infrared analysis revealed that CRP-1 and CRP-2 are α-pyranose structures containing furoic acid, while CRP-3 and CRP-4 are β-pyranose structures containing furoic acid. Experimental results demonstrated that all four purified polysaccharides inhibited the proliferation of cervical (HeLa) hepatoma (HepG-2) and colon (HCT-116) cancer cells, with CRP-4 showing the most significant inhibitory effect on colon cancer and cervical cancer, achieving inhibition rates of 60.58 ± 0.88% and 40.44 ± 1.44%, respectively, and significantly reducing the migration of HeLa cells. DAPI staining confirmed that the four purified polysaccharides inhibit cell proliferation and migration by inducing apoptosis in HeLa cells. CRP-1 has the most significant inhibitory effect on the proliferation of liver cancer cells. This study not only elucidates the potential application of C. reinhardtii polysaccharides in cancer therapy but also provides a scientific basis for their further development and utilization.

Funder

Guangxi Natural Science Foundation Project

Publisher

MDPI AG

Reference50 articles.

1. Cancer statistics for adolescents and young adults, 2020;Miller;CA Cancer J. Clin.,2020

2. Cancer treatment therapies: Traditional to modern approaches to combat cancers;Kaur;Mol. Biol. Rep.,2023

3. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison;Zhang;Bioact. Mater.,2023

4. Dual-targeted nanomedicines for enhanced tumor treatment;Zhu;Nano Today,2018

5. The derivatization and antitumor mechanisms of polysaccharides;Huang;Future Med. Chem.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3