New Secondary Metabolites of Mangrove-Associated Strains

Author:

Yu Yunxia12,Wang Zimin2,Xiong Dingmi2,Zhou Liman2,Kong Fandong2,Wang Qi1

Affiliation:

1. Department of Pediatric Intensive Care Medicine, Hainan Women and Children’s Medical Center, Haikou 570206, China

2. Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China

Abstract

Positioned at the dynamic interface between terrestrial and marine realms, mangroves embody a vibrant tapestry of biodiversity, encompassing an array of plants, animals, and microorganisms. These microbial inhabitants of mangrove habitats have emerged as a pivotal resource for antimicrobials and a plethora of pharmaceutically valuable compounds, spanning enzymes, antineoplastic agents, pesticides, immunosuppressants, and immunomodulators. This review delves into the recent landscape (January 2021 to May 2024, according to the time of publication) of novel secondary metabolites isolated from mangrove-associated microorganisms, analyzing 41 microbial strains that collectively yielded 165 distinct compounds. Our objective is to assess the productivity and potential of natural products derived from microbial populations within mangrove ecosystems in recent times. Notably, fungi stand out as the preeminent contributors to the emergence of these novel natural products, underscoring their pivotal role in the bioprospecting endeavors within these unique environments.

Funder

Specific Research Project of Guangxi for Research Bases and Talents

Guangxi Natural Science Foundation

National Natural Science Foundation of China

2021 University-Level Scientific Research Projects of Guangxi Minzu University

Talent Scientific Research Initiation Project of Guangxi Minzu University

Xiangsi Lake Youth Innovation Team Project of Guangxi Minzu University

Natural Science Foundation of Hainan Province

Hainan Province Clinical Medical Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3