Root Biomass Distribution and Soil Physical Properties of Short-Rotation Coppice American Sycamore (Platanus occidentalis L.) Grown at Different Planting Densities

Author:

Ile Omoyemeh JenniferORCID,Aguilos MaricarORCID,Morkoc Suna,Heitman Joshua,King John S.

Abstract

Short rotation woody crops (SRWCs) provide sustainable, renewable biomass energy and offer potential ecosystem services, including increased carbon storage, reduced greenhouse gas emissions, and improved soil health. Establishing SRWCs on degraded lands has potential to enhance soil properties through root and organic matter turnover. A better understanding of SRWC planting density and its associated root turnover impacts on soil–air–water relations can improve management. In this study, we investigate the effects of planting density for a low-input American sycamore SRWC (no fertilization/irrigation) on soil physical properties for a degraded agricultural site in the North Carolina piedmont. The objectives were (1) to estimate the distributions of coarse and fine root biomass in three planting densities (10,000, 5000, and 2500 trees per hectare (tph)) and (2) to assess the effects of planting density on soil hydraulic properties and pore size distribution. Our results show that planting at 10,000 tph produced significantly higher amounts of fine root biomass than at lower planting densities (p < 0.01). In the 25,000 tph plots, there was significantly higher amounts of coarse root biomass than for higher planting densities (p < 0.05). The 10,000 tph plots had lower plant available water capacity but larger drainable porosity and saturated hydraulic conductivity compared with lower planting densities (<0.05). The 10,000 tph plots total porosity was more dominated by larger pore size fractions compared with the 5000 and 2500 tph. Generally, our findings show similar patterns of soil hydraulic properties and pore size distributions for lower planting densities. The results from 10,000 tph indicate a higher air-filled pore space at field capacity and more rapid drainage compared with lower planting densities. Both characteristics observed in the 10,000 tph are favorable for aeration and oxygen uptake, which are especially important at wet sites. Overall, the results suggest that improved soil health can be achieved from the establishment of American sycamore SRCs on marginal lands, thereby providing a green pathway to achieving environmental sustainability with woody renewable energy.

Funder

USDA CSREES Rural Development Program

Publisher

MDPI AG

Subject

Forestry

Reference101 articles.

1. Ecosystem Services of Woody Crop Production Systems

2. Soil health and sustainability: managing the biotic component of soil quality

3. Soil quality: Current concepts and applications;Karlen;Adv. Agron.,2001

4. Soil quality—Humankind’s foundation for survival;Karlen;J. Soil Water Conserv.,2003

5. The dynamics of soil quality as a measure of sustainable management;Larson,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3