Effect of Partial Elimination of Mitochondrial DNA on Genome-Wide Identified AOX Gene Family in Chlamydomonas reinhardtii

Author:

Khan Asadullah12ORCID,Jihong Zuo1,Luo Haolin1,Raza Ali12ORCID,Hussain Quaid12ORCID,Hu Zhangli13ORCID

Affiliation:

1. Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China

2. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

3. Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518055, China

Abstract

Using Chlamydomonas as a model organism, we attempted to eliminate mitochondrial DNA (mtDNA) similar to rho0 or rho− cells (completely or partially mtDNA-eliminated cells) in yeast. We successfully generated partially mtDNA-eliminated cells named as crm- cells, causing the inactivation of mitochondrial activity. We used three different chemicals to eliminate mtDNA including acriflavine (AF), ethidium bromide (EB) and dideoxycytidine (ddC) which prevents replication, inhibits POLG (DNA polymerase gamma) and terminates the mtDNA chain, respectively. The qPCR method was used to detect the mtDNA copy number and the selected rrnL6 gene for the detection of mitochondria, as well as the selected Chlamydomonas CC-124 strain. A reduction in the mitochondrial copy number led to a higher expression of AOX1, UCP1, PGRL1 and ICL1, which indicates the disturbance of the mitochondria–chloroplast ATP and NADPH balance. We selected AOX genes to further study this family and carried out a genome-wide search to identify AOX genes in green algae (C. reinhardtii). Our results revealed that C. reinhardtii contains four AOX genes, i.e., CrAOX1, CrAOX2, CrAOX3 and CrAOX4, which are distributed on Chr 3, Chr7 and Chr9. All CrAOX genes were predicted to localize in mitochondria using bioinformatics tools. Phylogenetic analysis suggests that these CrAOXs are subdivided into four groups and genes existing in the same group could perform identical functions. Collinearity analysis describes the strong evolutionary relationships of AOXs between the unicellular green algae Chlamydomonas reinhardtii and the multicellular green algae Volvox carteri. GO (gene ontology) annotation analysis predicted that CrAOXs played an integral part in carrying out alternate oxidative and respirative activities. Three putative miRNAs, cre-miR1162-3p, cre-miR1171 and cre-miR914, targeting the CrAOX2 gene were identified. Our studies have laid a foundation for the further use of partially mtDNA-eliminated cells and elucidating the functional characteristics of the AOX gene family.

Funder

National Natural Science Foundation of China

Chinese National Key R&D Project for Synthetic Biology

Guangdong Key R&D Project

Shenzhen Special Fund for Sustainable Development

Development and Reform Commission of Shenzhen Municipality

Shenzhen University 2035 Program for Excellent Research

Publisher

MDPI AG

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3