Thermal Safety Study of Emulsion Explosive Matrix under the Coupled Effects of Environmental Pressure and Bubble Content with Internal Heat Source

Author:

Zhang Yi-Bo1ORCID,Liu Qian1,Shi Xiao-Cen2

Affiliation:

1. School of Public Safety and Emergency Management, Kunming University of Science and Technology, Kunming 650093, China

2. School of Management and Economics, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Emulsion explosives have become a hot topic in various studies due to their explosive combustion characteristics and detonation performance under different environmental pressures. The thermal safety of an emulsified matrix was studied with ignition energy as the characterization. A minimum ignition energy test experimental system for emulsion matrices was established in this research. The system simulated the occurrence of hot spots inside emulsion matrices using an electric heating wire. The effect of bubbles on the thermal safety of the emulsified matrix was studied by adding expanded perlite additive to the emulsified matrix. This study investigated the variation trend in the minimum ignition energy of the emulsion matrix under the coupled effect of bubbles and ambient pressure using the orthogonal experimental method. The impacts of two factors on the thermal safety of the emulsion matrix were studied at different hot-spot temperatures. Coupled analysis experiments were conducted on emulsion matrices containing 0%, 1.5%, and 3% expanded perlite under pressure environments of 1 atm, 2 atm, and 3 atm. The critical hot-spot temperature of the emulsion matrix significantly decreases with increasing bubble content at 1 atm and 2 atm pressures, as revealed by intuitive analysis and analysis of variance. However, at 3 atm of pressure, the bubble content in the emulsion matrix has no significant effect on its critical hot-spot temperature. The results show that the thermal safety of the emulsified matrix decreases with the increase in the content of expanded perlite and environmental pressure, and the influence of environmental pressure is more significant than that of the bubble content. This paper’s research content serves as a reference for a safe emulsified matrix and as an experimental basis for establishing a production line for developing new equipment.

Publisher

MDPI AG

Reference19 articles.

1. Perspectives in the stability of emulsion explosive;Zhang;Adv. Colloid Interface Sci.,2022

2. Rheological Properties and Stability of Emulsion Explosive Matrix;Zhang;J. Dispers. Sci. Technol.,2014

3. Burning characteristics of emulsion explosives (I) pressurized vessel test;Hirosaki;J. Explos. Soc.,2000

4. Recent advances in the combustion of water fuel emulsion;Kadota;Prog. Energy Combust. Sci.,2002

5. Void Size Measurement in Emulsion Explosives: A Noninvasive Approach Using NMR Imaging;Rao;Langmuir,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3