Prediction of Oil–Water Two-Phase Flow Patterns Based on Bayesian Optimisation of the XGBoost Algorithm

Author:

Wang Dudu12,Guo Haimin12,Sun Yongtuo12,Liang Haoxun12,Li Ao12,Guo Yuqing12

Affiliation:

1. College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China

2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University, Ministry of Education, Wuhan 430100, China

Abstract

With the continuous advancement of petroleum extraction technologies, the importance of horizontal and inclined wells in reservoir exploitation has been increasing. However, accurately predicting oil–water two-phase flow regimes is challenging due to the complexity of subsurface fluid flow patterns. This paper introduces a novel approach to address this challenge by employing extreme gradient boosting (XGBoost, version 2.1.0) optimised through Bayesian techniques (using the Bayesian-optimization library, version 1.4.3) to predict oil–water two-phase flow regimes. The integration of Bayesian optimisation aims to enhance the efficiency of parameter tuning and the precision of predictive models. The methodology commenced with experimental studies utilising a multiphase flow simulation apparatus to gather data across a spectrum of water cut rate, well inclination angles, and flow rates. Flow patterns were meticulously recorded via direct visual inspection, and these empirical datasets were subsequently used to train and validate both the conventional XGBoost model and its Bayesian-optimised counterpart. A total of 64 datasets were collected, with 48 sets used for training and 16 sets for testing, divided in a 3:1 ratio. The findings highlight a marked improvement in predictive accuracy for the Bayesian-optimised XGBoost model, achieving a testing accuracy of 93.8%, compared to 75% for the traditional XGBoost model. Precision, recall, and F1-score metrics also showed significant improvements: precision increased from 0.806 to 0.938, recall from 0.875 to 0.938, and F1-score from 0.873 to 0.938. The training accuracy further supported these results, with the Bayesian-optimised XGBoost (BO-XGBoost) model achieving an accuracy of 0.948 compared to 0.806 for the traditional XGBoost model. Comparative analyses demonstrate that Bayesian optimisation enhanced the predictive capabilities of the algorithm. Shapley additive explanations (SHAP) analysis revealed that well inclination angles, water cut rates, and daily flow rates were the most significant features contributing to the predictions. This study confirms the efficacy and superiority of the Bayesian-optimised XGBoost (BO-XGBoost) algorithm in predicting oil–water two-phase flow regimes, offering a robust and effective methodology for investigating complex subsurface fluid dynamics. The research outcomes are crucial in improving the accuracy of oil–water two-phase flow predictions and introducing innovative technical approaches within the domain of petroleum engineering. This work lays a foundational stone for the advancement and application of multiphase flow studies.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3