Reservoir Body Development Characteristics in Deep Carbonate Gas Reservoirs: A Case Study of the Fourth Member of the Dengying Formation, Anyue Gas Field

Author:

Wang Beidong12ORCID,Yang Shenglai12,Hu Jiangtao12ORCID,Zhao Shuai12,Deng Hui3,Zhang Yuxiang4,Yan Youjun3,Jiang Yi123

Affiliation:

1. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China

2. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China

3. Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu 610041, China

4. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

Abstract

Deep carbonate rocks are characterized by strong heterogeneity and fracture and cavity development, which have important influence on the storage and seepage capacity of reservoirs. To comprehensively characterize the developmental characteristics of the reservoir body in the intra–platform reservoir of the fourth member of the Dengying Formation in the Anyue gas field, this study employed a multiscale pore–throat structure characterization method that combines physical property analysis, core surface observation, cast thin section observation, a nuclear magnetic resonance (NMR) test, and CT scanning analysis. The results reveal that the primary storage spaces in the intra–platform reservoirs consist of inter–crystalline pores and small cavities (<2 mm), with thick throats and fractures serving as the primary flow channels. The rock density is lower in areas where solution fractures and cavities are developed, and the fractures and cavities are generally distributed in clusters. Notably, the intra–platform reservoir of the fourth member of the Dengying Formation is characterized by low asphaltene content. The presence of fractures in fracture–cavity type cores can reduce seepage resistance in the near–fracture area and enhance the drainage efficiency of small pores, as observed in the NMR test combined with centrifugation. In the centrifugal experiments, the increase in centrifugal force had the most significant impact on drainage efficiency, with the highest efficiency being 25.82% for cavity–type cores and the lowest being 6.39% for pore–type cores. Furthermore, by integrating the results of cast thin section and NMR test, the cavity–type reservoirs were further classified into two categories: dissolved cavity storage type and dissolved pore storage type. This study clarifies the storage and seepage characteristics of dissolved–pore storage reservoirs, which are challenging to develop but have high development potential. With reasonable surface operation measures, these reservoirs can provide important support for stable production in the middle and late stages of intra–platform reservoir development.

Funder

Sichuan Provincial Natural Science Foundation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3