Detonation of H2–Air–Steam Mixtures: A Potential Hazard in Large-Scale Electrolyzer and Fuel Cell Installations

Author:

Moghtaderi Behdad1ORCID,Zanganeh Jafar1ORCID,Song Hui1ORCID,Namazi Samira1

Affiliation:

1. Centre for Innovative Energy Technologies, The University of Newcastle, Callaghan, NSW 2308, Australia

Abstract

System failure in large-scale electrolyzer and fuel cell installations may cause the formation of explosive H2–air–steam mixtures. Detonation properties (e.g., detonation cell size) and flame dynamics features (e.g., flame acceleration, runup distance, and deflagration-to-detonation transition “DDT”) of these mixtures were investigated experimentally and numerically to gain a more in-depth understanding of the hazards of H2–air–steam under conditions pertinent to PEM-based electrolyzers and fuel cells (temperatures between 50 °C and 80 °C and pressures between 20 and 40 bar). While our results confirm the findings of previous studies in terms of the cooling effects of steam on detonation, we found that operating pressures between 20 and 40 bar counteract the effect of steam, making the H2–air–steam mixture more detonable. This is particularly evident from the experimental data on detonation cell size and runup distance at pressures greater than 20 bar.

Funder

University of Newcastle

Publisher

MDPI AG

Reference24 articles.

1. Natural hydrogen in the energy transition: Fundamentals, promise, and enigmas;Bach;Renew. Sustain. Energy Rev.,2024

2. International Renewable Energy Agency (IRENA) (2024, March 30). Hydrogen: Overview [Internet]. Available online: https://www.irena.org/Energy-Transition/Technology/Hydrogen.

3. International Energy Agency (2023, November 12). Global Energy Review 2021. Available online: https://www.iea.org/reports/global-energy-review-2021.

4. Jiang, Z., and Teng, H. (2022). Gaseous Detonation Physics and Its Universal Framework Theory, Springer.

5. Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient;Vollmer;Combust. Sci. Technol.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3