Assessment of SITE for CO2 and Energy Fluxes Simulations in a Seasonally Dry Tropical Forest (Caatinga Ecosystem)

Author:

Mendes Keila R.,Campos SuanyORCID,Mutti Pedro R.ORCID,Ferreira Rosaria R.ORCID,Ramos Tarsila M.,Marques Thiago V.,dos Reis Jean S.,de Lima Vieira Mariana M.,Silva Any Caroline N.,Marques Ana Maria S.,da Silva Duany T. C.,da Silva Daniel F.,Oliveira Cristiano P.ORCID,Gonçalves Weber A.,Costa Gabriel B.,Pompelli Marcelo F.,Marenco Ricardo A.,Antonino Antonio C. D.,Menezes Rômulo S. C.ORCID,Bezerra Bergson G.ORCID,Santos e Silva Cláudio M.

Abstract

Although seasonally dry tropical forests are considered invaluable to a greater understanding of global carbon fluxes, they remain as one of the ecosystems with the fewest observations. In this context, ecological and ecosystem models can be used as alternative methods to answer questions related to the interactions between the biosphere and the atmosphere in dry forests. The objective of this study was to calibrate the simple tropical ecosystem model (SITE) and evaluate its performance in characterizing the annual and seasonal behavior of the energy and carbon fluxes in a preserved fragment of the Caatinga biome. The SITE model exhibited reasonable applicability to simulate variations in CO2 and energy fluxes (r > 0.7). Results showed that the calibrated set of vegetation parameters adequately simulated gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). The SITE model was also able to accurately retrieve the time at which daily GPP and NEE peaked. The model was able to simulate the partition of the available energy into sensible and latent heat fluxes and soil heat flux when the calibrated parameters were used. Therefore, changes in the dynamics of dry forests should be taken into consideration in the modeling of ecosystem carbon balances.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3