An Improved Differential Evolution Adaptive Fuzzy PID Control Method for Gravity Measurement Stable Platform

Author:

Chen Xin1ORCID,Bian Hongwei1,He Hongyang1,Li Fangneng1

Affiliation:

1. School of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China

Abstract

In the platform gravimeter, the stabilization accuracy of the gravimetric stabilization platform is crucial to improve the accuracy of gravity value measurements due to its uncertainties, such as mechanical friction, inter-device coupling interference, and nonlinear disturbances. These cause fluctuations in the gravimetric stabilization platform system parameters and present nonlinear characteristics. To resolve the impact of the above problems on the control performance of the stabilization platform, an improved differential evolutionary adaptive fuzzy PID control (IDEAFC) algorithm is proposed. The proposed enhanced differential evolution algorithm is used to optimize the initial control parameters of the system adaptive fuzzy PID control algorithm to achieve accurate online adjustments of the gravimetric stabilization platform’s control parameters when it is subject to external disturbances or state changes and attain a high level of stabilization accuracy. The results of simulation tests, static stability experiments, and swaying experiments on the platform under laboratory conditions, as well as on-board experiments and shipboard experiments, all show that the improved differential evolution adaptive fuzzy PID control algorithm has a higher stability accuracy compared with the conventional control PID algorithm and traditional fuzzy control algorithm, proving the superiority, availability, and effectiveness of the algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference26 articles.

1. Absolute airborne gravimetry with a cold atom sensor;Bidel;J. Geod.,2020

2. Kiani, M. (2003). Image Gravimetry: A new remote sensing approach for gravity analysis in geophysics. arXiv.

3. The concept of resilience of national comprehensive PNT system;Bian;Geomat. Inf. Sci. Wuhan Univ.,2021

4. Performance estimate of some prototypes of inertial platform and strapdown marine gravimeters;Yuan;Earth Planets Space,2020

5. A comparison of stable platform and strapdown airborne gravity;Glennie;J. Geod.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3