Author:
Li Xingyue,Ta Wenjing,Hua Ruochen,Song Jihong,Lu Wen
Abstract
Glioma is an invasive brain cancer, and it is difficult to achieve desired therapeutic effects due to the high postoperative recurrence rate and limited efficacy of drug therapy hindered by the biological barrier of brain tissue. Nanodrug delivery systems are of great interest, and many efforts have been made to utilize them for glioma treatment. Polyamidoamine (PAMAM), a starburst dendrimer, provides malleable molecular size, functionalized molecular structure and penetrable brain barrier characteristics. Therefore, PAMAM-based nanodrug delivery systems (PAMAM DDS) are preferred for glioma treatment research. In this review, experimental studies on PAMAM DDS for glioma therapy were focused on and summarized. Emphasis was given to three major topics: methods of drug loading, linkers between drug/ligand and PAMAM and ligands of modified PAMAM. A strategy for well-designed PAMAM DDS for glioma treatment was proposed. Purposefully understanding the physicochemical and structural characteristics of drugs is necessary for selecting drug loading methods and achieving high drug loading capacity. Additionally, functional ligands contribute to achieving the brain targeting, brain penetration and low toxicity of PAMAM DDS. Furthermore, a brilliant linker facilitates multidrug combination and multifunctional PAMAM DDS. PAMAM DDS show excellent promise as drug vehicles and will be further studied for product development and safety evaluation.
Funder
National Natural Science Foundation of China
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献