The Value of SIRT1/FOXO1 Signaling Pathway in Early Detection of Cardiovascular Risk in Children with β-Thalassemia Major

Author:

Ibrahim Hoda A.,Zakaria Soha S.,El-Batch Manal M.,El-Shanshory Mohamed R.,Alrayes Zahrah R.,Kabel Ahmed M.ORCID,Eldardiry Samia A.

Abstract

Background: Atherosclerosis represents one of the major causes of morbidity in children with β-thalassemia major (β-TM). Aim: This study was designed to investigate SIRT1-FOXO1 signaling in β-TM children and their role in early detection of premature atherosclerosis. Methods: We equally subdivided 100 Egyptian children aged 6–14 years with β-TM according to carotid intima media thickness (CIMT) into 50 with CIMT < 0.5 mm and 50 with CIMT ≥ 0.5 mm, and 50 healthy children of matched age were included. They were subjected to evaluation of SIRT1, heat shock protein 72 (HSP72), and hepcidin levels via ELISA and forkhead box protein 1 (FOXO1) mRNA expression using real-time PCR in PBMCs; meanwhile, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase activities were evaluated spectrophotometrically. Results: Our results show significantly high values for CIMT, β-stiffness, atherogenic index of plasma (AIP), MDA, HSP72 and FOXO1, ferritin with significantly low hepcidin, SOD, catalase, and SIRT1 in β-TM as compared to controls with a more significant difference in β-TM with CIMT ≥ 0.5 mm than those with CIMT < 0.5 mm. A significant positive correlation between CIMT and MDA, HSP72, and FOXO1 gene expression was found, while a significant negative correlation with hepcidin, SOD, catalase, and SIRT1 was found. FOXO1 gene expression and HSP72 levels were the strongest independent determinants of CIMT. Conclusion: In β-TM, FOXO1 signaling is activated with low levels of SIRT1, and this is attributed to accelerated atherosclerosis in β-TM, which would be crucial in prediction of atherosclerosis.

Funder

Science and Technology Development Fund

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3