Heme Oxygenase-1 Inhibition Modulates Autophagy and Augments Arsenic Trioxide Cytotoxicity in Pancreatic Cancer Cells

Author:

Ahmad Iman M.1ORCID,Dafferner Alicia J.2ORCID,Salloom Ramia J.2ORCID,Abdalla Maher Y.2ORCID

Affiliation:

1. Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA

2. Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent form, accounting for more than 90% of all pancreatic malignancies. In a previous study, we found that hypoxia and chemotherapy induced expression of Heme Oxygenase-1 (HO-1) in PDAC cells and tissues. Arsenic trioxide (ATO) is the first-line chemotherapeutic drug for acute promyelocytic leukemia (APL). ATO increases the generation of reactive oxidative species (ROS) and induces apoptosis in treated cells. The clinical use of ATO for solid tumors is limited due to severe systemic toxicity. In order to reduce cytotoxic side effects and resistance and improve efficacy, it has become increasingly common to use combination therapies to treat cancers. In this study, we used ATO-sensitive and less sensitive PDAC cell lines to test the effect of combining HO-1 inhibitors (SnPP and ZnPP) with ATO on HO-1 expression, cell survival, and other parameters. Our results show that ATO significantly induced the expression of HO-1 in different PDAC cells through the p38 MAPK signaling pathway. ROS production was confirmed using the oxygen-sensitive probes DCFH and DHE, N-acetyl cysteine (NAC), an ROS scavenger, and oxidized glutathione levels (GSSG). Both ATO and HO-1 inhibitors reduced PDAC cell survival. In combined treatment, inhibiting HO-1 significantly increased ATO cytotoxicity, disrupted the GSH cycle, and induced apoptosis as measured using flow cytometry. ATO and HO-1 inhibition modulated autophagy as shown by increased expression of autophagy markers ATG5, p62, and LC3B in PDAC cells. This increase was attenuated by NAC treatment, indicating that autophagy modulation was through an ROS-dependent mechanism. In conclusion, our work explored new strategies that could lead to the development of less toxic and more effective therapies against PDAC by combining increased cellular stress and targeting autophagy.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference45 articles.

1. Cancer statistics, 2022;Siegel;CA Cancer J. Clin.,2022

2. Cancer statistics, 2023;Siegel;CA Cancer J. Clin.,2023

3. Pancreatic cancer: Understanding and overcoming chemoresistance;Wang;Nat. Rev. Gastroenterol. Hepatol.,2011

4. Introduction: The history of arsenic trioxide in cancer therapy;Antman;Oncologist,2001

5. Phase II trial of arsenic trioxide in patients with metastatic renal cell carcinoma;Vuky;Investig. New Drugs,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3