The Potassium Channel Blocker β-Bungarotoxin from the Krait Bungarus multicinctus Venom Manifests Antiprotozoal Activity

Author:

Osipov Alexey V.1,Cheremnykh Elena G.2,Ziganshin Rustam H.1,Starkov Vladislav G.1,Nguyen Trang Thuy Thi3,Nguyen Khoa Cuu4,Le Dung Tien4ORCID,Hoang Anh Ngoc4ORCID,Tsetlin Victor I.1ORCID,Utkin Yuri N.1ORCID

Affiliation:

1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia

2. Mental Health Research Centre, Moscow 115522, Russia

3. Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam

4. Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam

Abstract

Protozoal infections are a world-wide problem. The toxicity and somewhat low effectiveness of the existing drugs require the search for new ways of protozoa suppression. Snake venom contains structurally diverse components manifesting antiprotozoal activity; for example, those in cobra venom are cytotoxins. In this work, we aimed to characterize a novel antiprotozoal component(s) in the Bungarus multicinctus krait venom using the ciliate Tetrahymena pyriformis as a model organism. To determine the toxicity of the substances under study, surviving ciliates were registered automatically by an original BioLaT-3.2 instrument. The krait venom was separated by three-step liquid chromatography and the toxicity of the obtained fractions against T. pyriformis was analyzed. As a result, 21 kDa protein toxic to Tetrahymena was isolated and its amino acid sequence was determined by MALDI TOF MS and high-resolution mass spectrometry. It was found that antiprotozoal activity was manifested by β-bungarotoxin (β-Bgt) differing from the known toxins by two amino acid residues. Inactivation of β-Bgt phospholipolytic activity with p-bromophenacyl bromide did not change its antiprotozoal activity. Thus, this is the first demonstration of the antiprotozoal activity of β-Bgt, which is shown to be independent of its phospholipolytic activity.

Funder

Russian Foundation for Basic Research

Vietnamese Academy of Sciences and Technology

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3