Development of Three-Dimensional Human Intestinal Organoids as a Physiologically Relevant Model for Characterizing the Viral Replication Kinetics and Antiviral Susceptibility of Enteroviruses

Author:

Tsang Jessica Oi-Ling,Zhou Jie,Zhao Xiaoyu,Li Cun,Zou Zijiao,Yin Feifei,Yuan ShuofengORCID,Yeung Man-Lung,Chu HinORCID,Chan Jasper Fuk-WooORCID

Abstract

Enteroviruses are important causes of hand, foot, and mouth disease, respiratory infections, and neurological infections in human. A major hurdle for the development of anti-enterovirus agents is the lack of physiologically relevant evaluation platforms that closely correlate with the in vivo state. We established the human small intestinal organoids as a novel platform for characterizing the viral replication kinetics and evaluating candidate antivirals for enteroviruses. The organoids supported productive replication of enterovirus (EV)-A71, coxsackievirus B2, and poliovirus type 3, as evidenced by increasing viral loads, infectious virus titers, and the presence of cytopathic effects. In contrast, EV-D68, which mainly causes respiratory tract infection in humans, did not replicate significantly in the organoids. The differential expression profiles of the receptors for these enteroviruses correlated with their replication kinetics. Using itraconazole as control, we showed that the results of various antiviral assays, including viral load reduction, plaque reduction, and cytopathic effect inhibition assays, were highly reproducible in the organoids. Moreover, itraconazole attenuated virus-induced inflammatory response in the organoids, which helped to explain its antiviral effects and mechanism. Collectively, these data showed that the human small intestinal organoids may serve as a robust platform for investigating the pathogenesis and evaluating antivirals for enteroviruses.

Funder

Hong Kong Hainan Commercial Association

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3